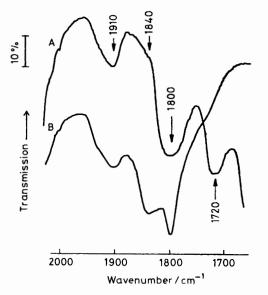
Zero-valent Iron Catalyst derived from Fe(CO)₅ supported on KOH-doped Alumina: High Activity for the Hydrogenation of Ethylene

Akio Kazusaka, Hisao Suzuki, and Isamu Toyoshima

Research Institute for Catalysis, Hokkaido University, Sapporo 060, Japan

A supported zero-valent iron catalyst derived from $Fe(CO)_5$ was prepared by the use of alumina doped with KOH; it was characterised using the i.r. band of adsorbed NO and its activity is comparable to that of the promoted iron catalyst in hydrogenation of C_2H_4 .


Recently, Hucul and Brenner¹ reported that the formation of zero-valent metal catalysts from metal carbonyls supported on γ -Al₂O₃ is accompanied by oxidative decarbonylation involving hydroxyl groups of the alumina, and that the use of a highly dehydrated alumina with carbonyls of Cr, Mo, and W allows the synthesis of zero-valent metal catalysts which are very active in the hydrogenation of C₂H₄.² We now report our results in this area. We used alumina doped with KOH to prepare a novel zero-valent iron catalyst derived from Fe(CO)₅, which is as active in the hydrogenation of C₂H₄ as the reduced doubly promoted iron ammonia synthetic catalyst or an evaporated film of Fe.³

Three catalysts A, B, and C were synthesised. The alumina support for catalyst A was formed by impregnating γ -Al₂O₃ with 1M KOH (JRC-ALO-1 from the Catalysis Society of Japan) and filtering off and drying the solid at 200 °C for 5 h. The KOH-doped alumina was outgassed at 450 °C for 1 h, and exposed to Fe(CO)₅ vapour. The prepared sample was heated

in vacuo in a stepwise fashion from room temperature to 400 °C in 1 h intervals to decompose the iron carbonyl on the alumina. Atomic absorption analysis (a.a.a.) gave 0.8 wt % Fe and 9.4 wt % of K. Catalyst B was prepared in an identical manner to catalyst A except that the γ -Al₂O₃ support was not impregnated with KOH. 0.2 wt % of Fe was detected by a.a.a. Catalysts A and B had surface areas of 160 and 187 m² g⁻¹, respectively, after decarbonylation at 400 °C for 1 h.† Catalyst C was a doubly promoted iron ammonia synthetic catalyst containing in addition to iron oxide, 0.33 wt % of K₂O and 2.55 wt % of Al₂O₃ which was reduced overnight at 450 °C in a stream of hydrogen followed by outgassing at 450 °C for 1 h.⁴

In order to characterise the state of iron on catalyst A or B

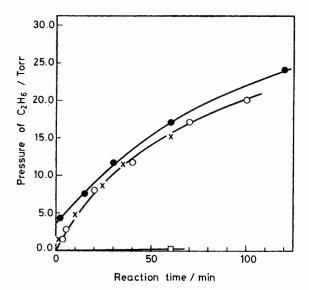

[†] The surface area of γ -Al₂O₃ was decreased from 185 to 153 m² g⁻¹ by doping with KOH.

Figure 1. I.r. spectra of chemisorbed NO. T = 25 °C; P = 200 Torr. (A) Catalyst A (containing 0.8 wt % Fe and 9.4 wt % K on γ -Al₂O₃); (B) Catalyst B (containing 0.2 wt % Fe on γ -Al₂O₃). Catalysts A and B were activated at 300 °C for 1 h.

the adsorption of NO was studied using i.r. spectroscopy (200 Torr, room temp.). As shown in Figure 1, catalyst A gave strong bands at 1800 and 1720 cm⁻¹ due to the stretching vibration of NO adsorbed on iron and bands at 1910 and 1840 cm⁻¹ due to NO on the alumina support. These results are in agreement with those obtained by Bandow, Ohnishi, and Tamaru⁵ for the reaction of iron vapour with NO at low temperature. They attributed the band at 1800 cm⁻¹ to NO adsorbed on metallic iron particles. Catalyst B, though, only gave a weak shoulder at *ca*. 1745 cm⁻¹ (Figure 1). There is, therefore, much more zero-valent iron on catalyst A than on B, since A gives the 1720 cm⁻¹ stretch typical of adsorbed NO.

The hydrogenation of C_2H_4 was performed with an equimolar mixture (60 Torr) of C_2H_4 and H_2 at 0 °C or at room temperature in a recirculating system. Figure 2 shows typical results of the reaction at 0 °C using catalyst A activated at 400 °C for 1 h[±] in comparison with those using catalyst B or C.

Figure 2. Hydrogenation of C_2H_4 . T = 0 or 25 °C, C_2H_4 : $H_2 = 1:1$ (P = 60 Torr); $\bigcirc \bullet$: Catalyst A (containing 0.8 wt % Fe and 9.4 wt % K on γ -Al₂O₃), 1 g; \square : Catalyst B (containing 0.2 wt % Fe on γ -Al₂O₃), 1 g; \checkmark : Catalyst C (containing 70 wt % Fe, 0.33 wt % K₂O and 2.55 wt % Al₂O₃), 0.5 g. Catalysts A and B were activated at 400 °C for 1 h.

Catalyst A has a much greater activity than catalyst B, and is as active as catalyst C. Even after reducing catalyst B with H_2 at 400 °C for 1 h its activity was not enhanced. It is noteworthy that the activity of catalyst A is roughly comparable to that of an Fe film.³

Zero-valent metals on alumina have been reported to be oxidised by the H⁺ of the hydroxyl group of alumina.¹ The i.r. spectrum of the KOH-doped alumina gave a weak band due to the OH stretching vibration at *ca*. 3600 cm⁻¹. Therefore, we suggest that replacement of H⁺ on alumina with K⁺ prevents oxidation of zero-valent iron due to decarbonylation.

Received, 20th September 1982; Com. 1117

References

- 1 D. A. Hucul and A. Brenner, J. Phys. Chem., 1981, 85, 496.
- 2 D. A. Hucul and A. Brenner, J. Chem. Soc., Chem. Commun., 1982, 830.
- 3 A. Kouskova, J. Adamek, and V. Ponec, Collect. Czech. Chem. Commun., 1970, 35, 2538.
- 4 A. Kazusaka and I. Toyoshima, Z. Phys. Chem. N.F., 1981, 128, 111.
- 5 H. Bandow, T. Ohnishi, and K. Tamaru, Chem. Lett., 1978, 83.

 $[\]ddagger$ Complete decarbonylation above 300 °C (as indicated by i.r.) was required to ensure high catalytic activity. Detailed results will be reported elsewhere.